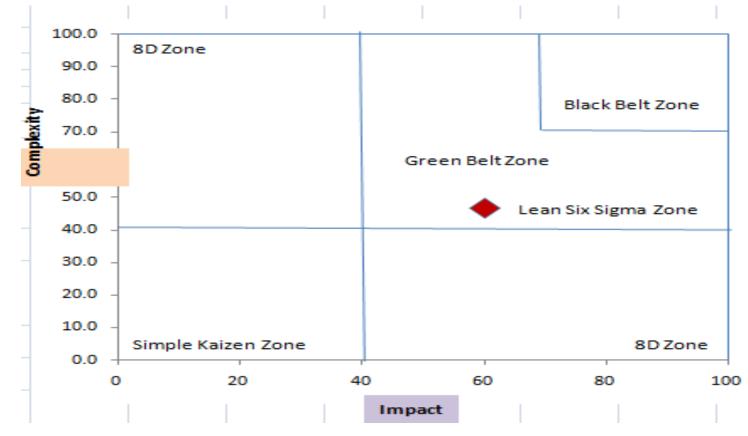


Lean Six Sigma – Project Presentation

Project TitleTo Reduce flange coupling dimensional variation in taper boring
and final grinding

Process / Product	Machining Process					
GB Name	Balaji D	Champion / Sponsor Name	R.Sethuraman (CQ-SQ, AL)			
GB Project No	GB/Ennore/2011/A	BB / MBB Name	V. Rajagopal (LSS, CQ-TQM, AL)			
Unit	Chennai Machining unit Supplier Code 3262	Function / Dept.	Quality dept			
Start Date	01.08.2011	End Date	15.03.2012			
Team Members	Sukumar (General Manager, CFL Chennai), Rakkumuthu (Production Head, CFL, Chenna), SenthilKumar (Quality, CFL, Chennai),					



Project Selection Matrix

L		æ				Rating Guidelines	
#	Aspect	Weightage	Rating (1, 3, 9)	Score (Weight X Rating)	1	3	9
				Im	pact		
1	Impact on the Customer	0.3	3	0.9	No Effect or No Direct Effect	Impacts the Internal Customers but only Indirect impact on the final customer.	Direct Effect on the Final Customer / Internal Customer
2	Money Saving Potential	0.3	3	0.9	Less Than 10 Lakhs	Between 10 to 50 lakhs	More Than 50 lakhs
3	Frequency of the Problem	0.2	9	1.8	Less than 1000 PPM	Between 1000 to 5000 PPM	More than 5000 PPM
4	Linkage to the Business Goals	0.2	9	1.8	No Direct Linkage	Very Weak Linkage	Direct Linkage to Company's Business Goals
		1		5.4			
	Impact Score	2		60			
				Com	plexity		
1	Knowledge about the Solution	0.3	3	0.9	Solution is Known, requires only Implementation	Solution is known for a similar situation, but needs to be tried out for the current situation.	Solution is Not Known , to be found out.
2	Data Availability	0.3	3	0.9	All Data is readily available	Requires Little effort	No data is available, we need to put up a process for data collection
3	Manpower Required	0.2	9	1.8	Concerned Executive is sufficient for Implementation	Requires help from one more function	Requires support from more than one function.
4	Time Required	0.2	з	• 0.6	Can be implemented within a Month	Upto 3 months is required	Min 6 Months is required
		1		4.2			
	Complexity Sco	ore		46.7			

Project Selection Matrix

Problem Solving Methodology Selection Grid

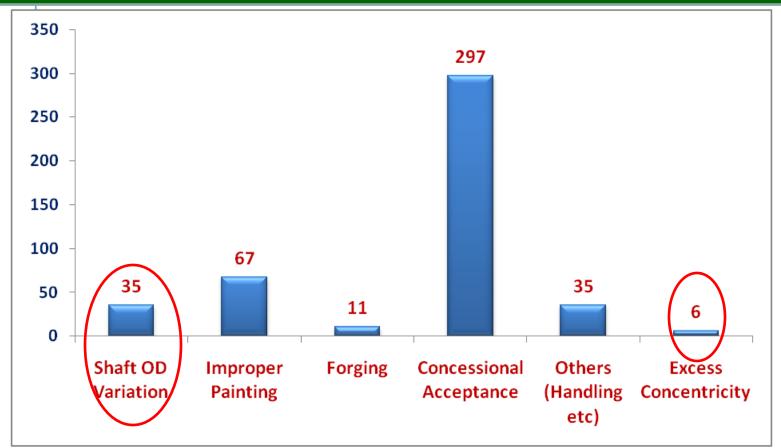
Improve

4

Project Charter

Project Code	GB/ 2011	Ennore/ 1/A	Gree	n Belt	t Balaji D Unit / Machining / Quality Function						uality			
Mentor / Spo	nsor		AL C	QE-R. Se	thurama	an / P. Daks	shinamurthy	Gei	mba			Mach	ining Un	it
	Project Definition													
Project Title	Т	o reduce	Flange	e Coupling	g dimen	sional varia	ations							
Problem Definition		Repeated issues (during March 2011 – Aug 2011) arising out of dimensional variations with Flange Coupling component at the customer end.												
Scope	Fi	inishing (Operatio	on 1 and (Operatio	on 2 done i	n CNC in Ma	chining	unit					
Goal Statement	М	etric		PPM	From	2,30	3 PPM	То		100 PF		Target (Entitle	ment)	0 PPM
Tangible Benefits		loney avings /	ECU		•	ejections ar s from it	nd there by	Other Tangil					tion will I	be improved
Customers	A	shok Ley	land							-				
Linkage to Company Objective	Li	nked to t	he Obj	jective of	SQMI ra	ating of 93%	%							
Time Lines	D		24/08/2 011	2 Meas	sure	10/09/20 11	Analyze	30/09/ 011	/2 Ir	nprove	31/10/ 1	/201	Contro	I 19/11/20 11
Support Required				r (Genera E – R. Se	•		imuthu (Prod	uction h	nead), S	SenthilKu	mar (Qu	uality),	Balaji (G	eneral
Approvals	М	lentor: R	. Sethu	raman	Unit	Head: D.Ba	alaji		AL ł	Knowledg	e Acade	emy: V	/. Rajago	pal
GLEAN SIX SIGMA						Defi	ne Mea	sure	Ana	lyze	Improve	e	Control	5

One Page Executive Summary


Reason for selection at this juncture	To reduce frequent customer complaint's, and to improve customer satisfaction levels								
Goal / Objective	To reduce Flange Coupling dimension 100 PPM	To reduce Flange Coupling dimensional variations from 29,950 PPM to 100 PPM							
Benefits	Tangible	Intangible							
	Uninterrupted Customer lineLoss & Rejections will be reduced	 Customer satisfaction will be improved In house morale will be improved 							
	Targets	Actual							
Results	 PPM of less than 100 80% reduction of in process rejections due to shaft OD oversize / undersize 	 Customer PPM: 0 as of Jan 2013 100% reduction in, in-process rejections due to Shaft OD o/s or u/s 80% reduction in overall in in- process rejections. 							
GLERN SIX SIGMA	Define Measur	e Analyze Improve Control							

Business Case

Period	Threats (Negative aspects if we don't take up this project now)	Opportunities (Positive aspects if we take up this project now)	
Short Term (3 to 6 Months)	-Customer dissatisfaction -Loss due to customer rejections (cost of poor quality)	 Improvement in customer satisfaction Opportunities in new product development 	
Long Term (3 to 5 Yrs)	 Regular orders will be reduced Loss of Credibility 	 Improvements in in- house quality awareness Use of learning's from this project to other components 	
GLERN SIX SIGMR	Define Measure	Analyze Improve Control 7	

Background Information

Data – Customer Rejections from April 2011 to August 2011

Inference / Conclusion from the Data

Dimensional variations is the topmost reason for rejections

ERN SIX SIGMA	Define	Measure	Analyze	Improve	Control	
---------------	--------	---------	---------	---------	---------	--

8

Background Information

Data – Flange Coupling Customer Issues for the duration of April – Sep 2011

Defect Grouping	Defect Quantity	GRN Quantity	PPM	Remarks
Shaft OD Variation	35	15,196	2,303	Dimensional variation, needs to be controlled in the machining process
Improper Painting	67	15,196	4,409	
Forging	11	15,196	723	Segregation of components with excess material and control at Forging
Concessional Acceptance	297	15,196	19,544	Assign person to upload inspection reports regularly
Excess Concentricity	6	15,196	394	Dimensional variation, needs to be controlled in the machining process
Others (Handling etc)	35	15,196	2,303	Handling, Packing issues.

Inference / Conclusion from the Data

Dimensional variations is the topmost cause for rejections, while improper painting, handling are more of discipline related issues

Project Tracker

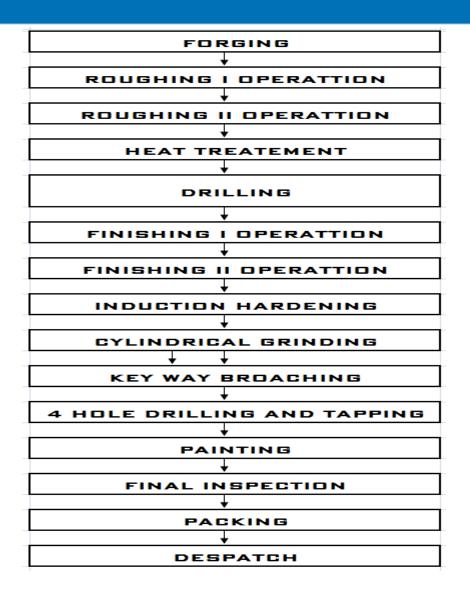
Phase	Activity		Jul'11	Aug'11	Sep'11	Ocť 11	Nov'11	Dec'11	Jan ' 12	Feb '12	Mar '12	Apr '12	May '12
Define	Charter	Р											
Define	preparation	Α											
	Process Map	Р											
		Α											
Measure	MSA	Р											
measure		Α											
	Attribute	Р											
	P-chart	Α											
Scatter, Box	Р												
	plots nalyze Customer onsite Visit	Α											
		Р											
		Α											
	Hypothesis	Р											
	tests	Α											
	Hypothesis	Р											
I	Tests Process	Α											
-	Capability -	Р											
	New	Α											
	Control Plans	Р											
Control		Α											
		Р											
/		Α											
GLERN SIX	(SIGMR					Define	Meas	sure > A	nalyze	Improv	e 🔪 Co	ontrol	10

Project Reviews with AL

Dat	te	Location	Discussion With	Members Participated	Remarks
20/12	2/11	CFL, Ambattur	CQ-SQ Vertical Head & BB	Balaji, Rakkumuthu, Premkarthik, Sukumar	Review up to Measure Phase (refer attached MOM)
24/02	2/12	CFL, Ambattur	CQ-SQ Vertical Head & BB	Balaji, Rakkumuthu	Review up to Improve Phase

Inference / Conclusion from the Data

Visits undertaken to supplier Gemba for the project support was provided


C LERN SIX SIGMR	Define	Measure	Analyze	Improve	Control	11
------------------	--------	---------	---------	---------	---------	----

Measure

Flow Chart

Define

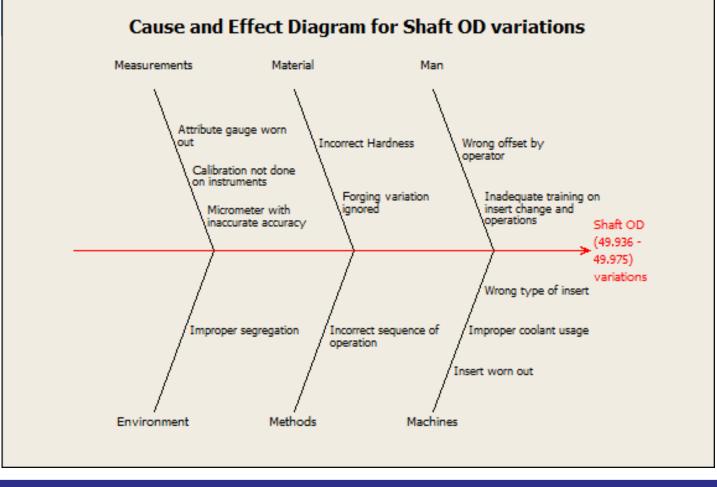
Measure

Analyze

Control

Process Flow Chart – Detailed - Sample

Operation No.	-	Brief Description.	Incoming source	Process flow	Output
Operation No.			of variation.	Diagram	Characteristics
10	CNC	CI st Operation	Forging, Forging Mismatch		DIAMETER - 39.80 / 40.20
			Unfilling,Lap,Fitting,O/S,U/S		DIAMETER - 15.90 / 16.10
			M/c,Gauge,Speed,Feed,Tool,		CHAMFER - $2 \times 45^{\circ}$
			Coolant, R.P.M, Fixture	10	LENGTH - 40.50 / 41.00
			Insert,Drill		LENGTH - 110.20 / 110.80
20	CNC	CII nd Operation	Size U/S,O/S,Insert		DIAMETER - 117.30 / 117.70
			M/c,Gauge,Speed,Feed,Tool,		DIAMETER - 52.30 / 52.70
			Coolant, R.P.M, Fixture	20	LENGTH - 14.80 / 15.20
			Insert		CHAMFER - $1.5 \times 45^{\circ}$
					CHAMFER - $1.5 \times 45^{\circ}$
					DISTANCE - 25.80 / 26.20
					DISTANCE - 108.20 / 108.80
30	Heat	t Treatement	Material, Furnace Temperature		HARDNESS
			Quenching Media,		
			Tempering Temperature,		
			Time	30	
40	Ø 13	3.5 Drilling	Size U/S,O/S ,Drill Bit		CENTER OFFSET
			M/c,Gauge,Speed,Feed,Tool,		OD OVALITY
			Coolant,R.P.M,Fixture		DIAMETER - 13.30 / 13.70
				40	DEPTH - 29.00 / 30.00


Process Flow Chart – Detailed (Contd...)

Operation No.	Brief Description.	Incoming source	Process flow	Output
Operation No.		of variation.	Diagram	Characteristics
50	CNC Finishing I st Operation	Size U/S,O/S ,Insert M/c,Gauge,Speed,Feed,Tool, Coolant,R.P.M,Fixture U Drill,Thread Insert	50	RUNOUT,FACEOUT OD-49.936/49.975, DEPTH,THREAD,CHAMFER ID,LENGTH,RADIUS
60	CNC Finishing II nd Operation	Size U/S,O/S ,Insert M/c,Gauge,Speed,Feed,Tool, Coolant,R.P.M,Fixture	60	OD-49.90/50.10,TOTAL LENGTH TAPER FINISH,DEPTH,ANGLE LENGTH,RUNOUT,FACEOUT CHAMFER,RADIUS
70	Induction Hardening	Material,Induction Coil Quenching Ring,Anvil Indenter	70	HARDNESS-550 HV Min
80	Cylindrical Grinding	Size U/S,O/S ,Grinding Wheel M/c,Gauge,Speed,Feed,Tool, Coolant,R.P.M,Taper Mandrel Dresser	80	OD-34.936/34.975 CONCENTRICITY-0.1 DEPTH
90	Key Way Broaching	M/c,Gauge,Speed,Feed, Coolant,R.P.M,Fixture Broaching Tool,Sim	90	KEY WAY WIDTH, DEPTH
100	4 Hole Drilling and Tapping	Size U/S,O/S ,Drill Bit M/c,Gauge,Speed,Feed,Tool, Coolant,R.P.M,Fixture	90	CENTER OFFSET THREAD,PCD,DEPTH

Control

Fish Bone Diagram

Inference / Conclusion from the Data

Multiple factors could lead to dimensional variations with Flange Coupling

4				
O	LEAN	SIX	S	GM

Define	Measure	Analyze	Improve	Control
--------	---------	---------	---------	---------

FMEA - Before

Process		Potential	Potential	S	С	Potential	0	Current	Current	D	R.
Function		Failure	Effect(s) of	E	L	Cause(s) /	C	Process	Process	E	P.
T direction		Mode	Failure	V	A	Mechanism(s)	C	Controls	Controls	T	N.
	Requirements	Mode	T differe	•		of Failure		Prevention	Detection	-	11.
	Ttequilententes		Extra material to be	5		Process problem at	3	Trevention	Receiving	2	30
		Outer Dia 122 Over	removed in next	-		Supplier end	-		Inspection Report	_	
		Size	operation						inopeotion report	_	
			operation							_	
		Outer Dia 122 Under	Unclear	5		Process problem at	3		Receiving	2	30
		Size		Ū		Supplier end	Ū		Inspection Report	-	
10.RECEIVIN	IG INSPECTION			_			-		пареспол кероп	-	
			Extra material to be	5		Process problem at	3		Receiving	2	30
		Length 110 over size	removed in next			Supplier end			Inspection Report		
			operation								
		Length 110 under size	Unclear	5		Process problem at	3		Receiving	2	30
						Supplier end			Inspection Report		
		Outer diameter	Assembly Fitment	6		Insert Worn out	2	Tool life fixed &	Line	3	36
		Ø35.32/35.37 Over Size	Problem at customer					Insert changed	Inspection Report	_	
			end								
			Assembly Fitment	6		wrong Offset given	2	Trained setter	Line	3	36
		Outer diameter	Problem at customer	Ū		mong onoor groon	-		Inspection Report	ľ	
20. CNC F	FINISHING 1st	Ø35.32/35.37 Under Size	end						inopeotion report		
	RATION	Outer diameter	Assembly Fitment	6			4	Tool life fixed &	Line	2	48
		Ø49.936/49.975 Over	Problem at customer	-		Insert Worn out	-	Insert changed	Inspection Report	_	
		Size	end								
		Outer diameter	Assembly Fitment	6		wrong Offset given	3	Trained setter	Line	3	54
		Ø49.936/49.975 Under	Problem at customer						Inspection Report		
		Size	end								
		Tanan Dana	Assembly Fitment	5		Taper Tool worn Out	3	Tool life fixed &	Line	3	45
		Taper Bore 19.85/19.90 Under size	Problem at customer			Taper Tool worn Out		Insert changed	Inspection Report		
		19.00/19.90 Onder Size	end								
			Assembly Fitment	5		wrong Offset given	3	Trained setter	Line	3	45
		Taper Bore	Problem at customer						Inspection Report		
	INISHING 2nd	19.85/19.90 Over size	end								
OPE	RATION										
			Assessable Etc. (6		Improper loading		Tasta a di s	l in a		70
		Run out 0.1 variation	Assembly Fitment	6		improper loading	4	Trained operator	Line	3	72
		Run out 0.1 Variation	Problem at customer				1		Inspection Report	-	
			end							-	
										-	
							1				1

Define

Analyze

Improve Co

Control

MSA Before Improvement - Set up

Category	Data
Number of Appraisers	3
Number of Parts	10
Number of Trails per Appraiser	3
Equipment under MSA study	MICROMETER (.01 accuracy)
Tolerance	0.039

MSA Results – Before Improvement

Gage R&R

	ę	Contributio	n	
Source	VarComp	(of VarComp)	
Total Gage R≨R	0.0000685	27.3		
Repeatability	0.0000408	16.3	1	
Reproducibility	0.0000277	11.0	6	
Operators	0.0000066	2.6	5	
Operators*Parts	0.0000210	8.4	0	
Part-To-Part	0.0001818	72.6	3	
Total Variation	0.0002503	100.0	0	
Source	StdDev (SD)	Study Var (6 * SD)	<pre>\$Study Var (\$SV)</pre>	<pre>%Tolerance (/SV/Toler)</pre>
Total Gage R&R	0.0082776		52.32	127.35
Repeatability	0.0063901		40.39	98.31
Reproducibility		0.0315700	33.26	80.95
Operators		0.0154680	16.29	39.66
Operators*Parts			28,99	
Part-To-Part		0.0809023		207.44
Total Variation	0.0158218		100.00	243.41

Number of Distinct Categories = 2

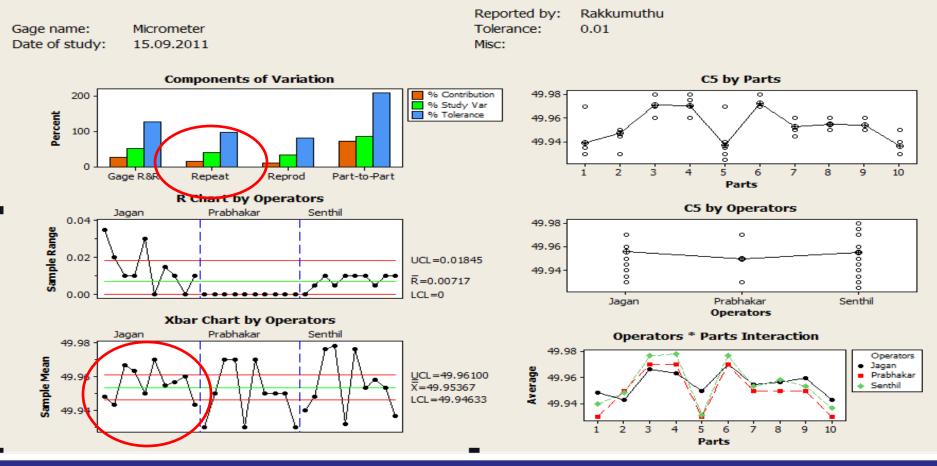
Inference / Conclusion from the Data

Total Gage R&R (52.32%) is > 30%, so measurement system is not accceptable. Micrometer with wrong accuracy used, and No of distinct categories is 2.

4				
O	LEAN	SIX	S	GM

D	efi	in	е
	011		U

Measure


Analyze

Improve

Control

MSA Results – Before Improvement

Gage R&R (ANOVA) for C5

Inference / Conclusion from the Data

Training to be given to Operators, and due to high repeatability score, equipment could be an issue

Measure

Analyze

Control

MSA Results – Before Improvement

Inference / Conclusion from the Data

Micrometer with least count .01 were regularly used, hence there is a need to change

re 🔪 C

Control

Actions taken to Improve MSA

No Actions taken

- 1 Digital Micrometer with improved least count used
- 2 Training on usage of Digital Micrometer given to all operators

Control

Inference / Conclusion from the Data

Micrometer with least count .01 were regularly used, hence there is a need to change

GLERN SIX SIGMA	Define	Measure	Analyze	Improve	
-----------------	--------	---------	---------	---------	--

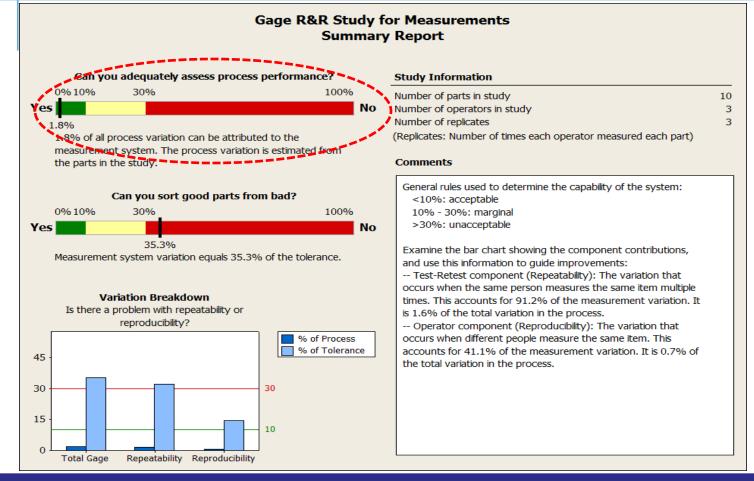
MSA After Improvement - Set up

Category	Data
Number of Appraisers	3
Number of Parts	10
Number of Trails per Appraiser	3
Equipment under MSA study	Digital Micrometer 25-50 mm
Tolerance	0.039
Least Count	0.001

MSA Results – After Improvement

Inference / Conclusion from the Data

Digital Micrometer with 0.001 accuracy used.



Measure A

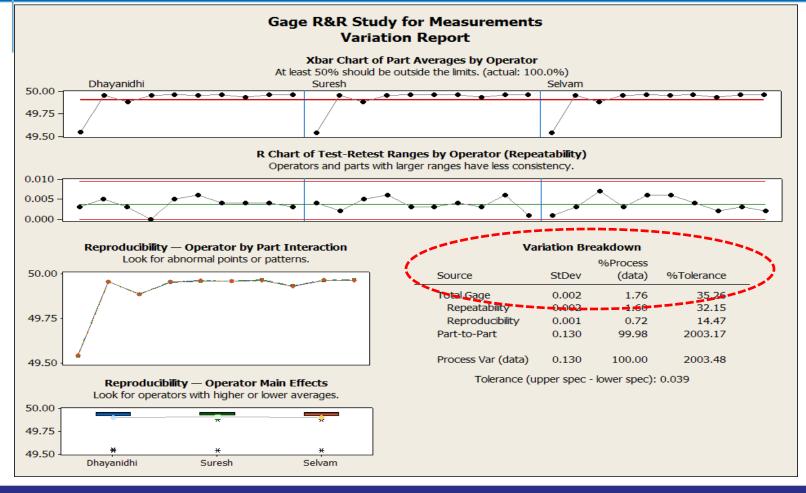
Analyze

Improve

Control

Inference / Conclusion from the Data

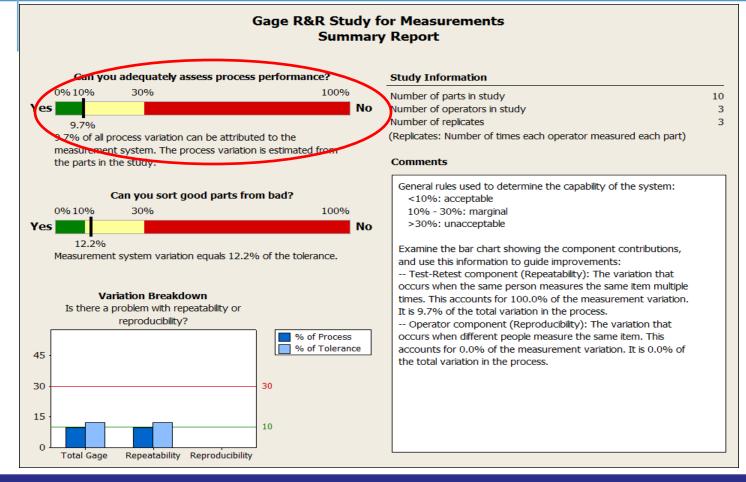
Total Gage R&R (1.8%) is < 10%, so measurement system is ACCEPTABLE.


Define

Measure

Analyze

Improve

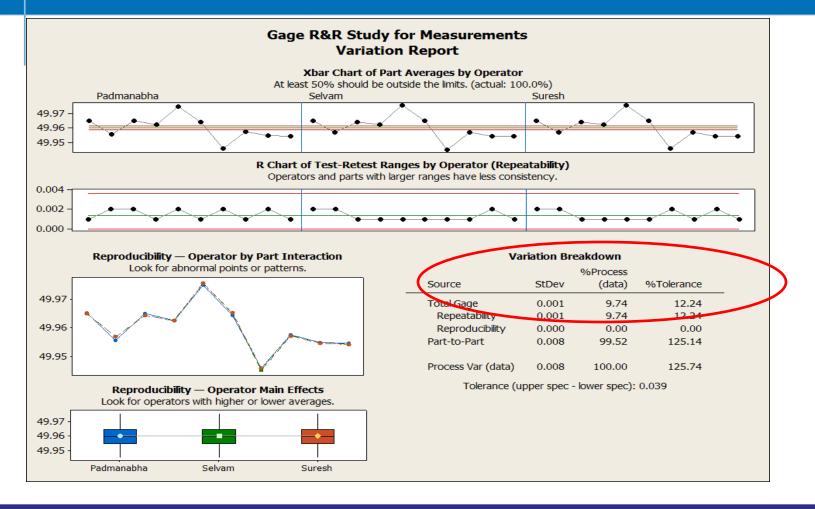

Control

Inference / Conclusion from the Data

Repeatability and Reproducibility is less than 10% - Measurement system is acceptable

Inference / Conclusion from the Data

Total Gage R&R (9.7%) is < 10%, so measurement system is ACCEPTABLE.


Define

Measure

Analyze

Improve

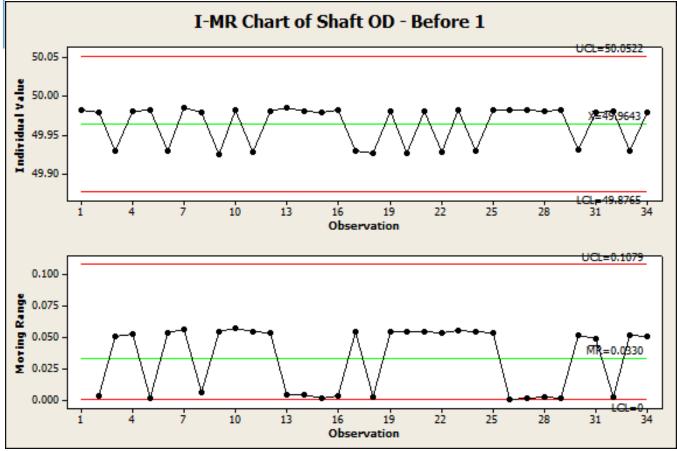
Control

Measure

Analyze

Control

Improve


Inference / Conclusion from the Data

Repeatability and Reproducibility is less than 10% - Measurement system is acceptable

Define

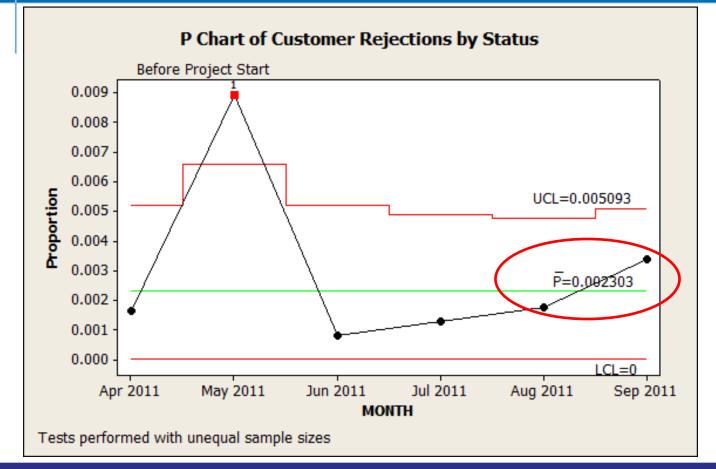
I-MR Chart – Shaft OD Variations Supplier End

Inference / Conclusion from the Data

From the control chart, we can infer that the process is not stable, scope for improvement

Project Base Line - Raw Data

Month	Received	Total rejection related to ID Oversize / Under size
11-Mar	3,000	56
11-Apr	2,803	4
11-May	2,405	5
11-Jun	2,114	5
11-Jul	2,579	7

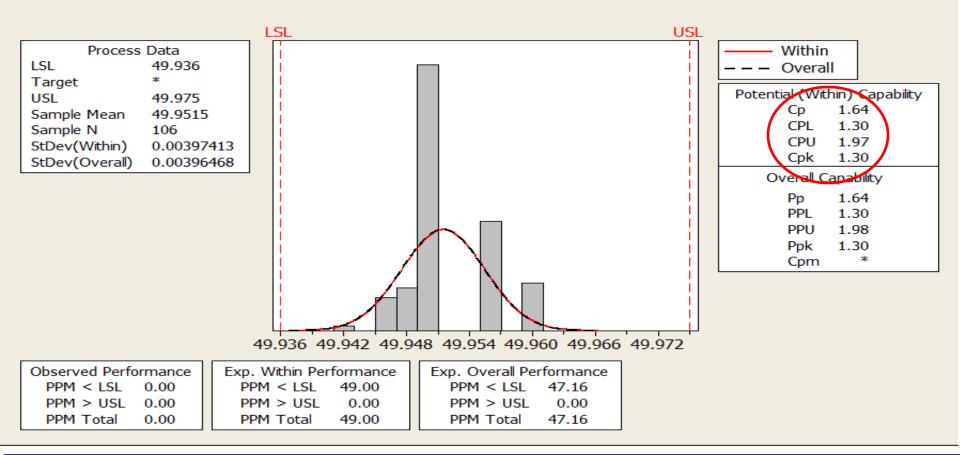

Inference / Conclusion from the Data

Shaft OD variation is a consistent issue at the customer end

4				
O	LEAN	SIX	S	GM

30

Project Base Line - Attribute P-Chart


Inference / Conclusion from the Data

Baseline PPM is 2303, May quantities were high as the process controls were revisited based on customer feedback

Project Base Line (Continuous data) – Initial Process Capability

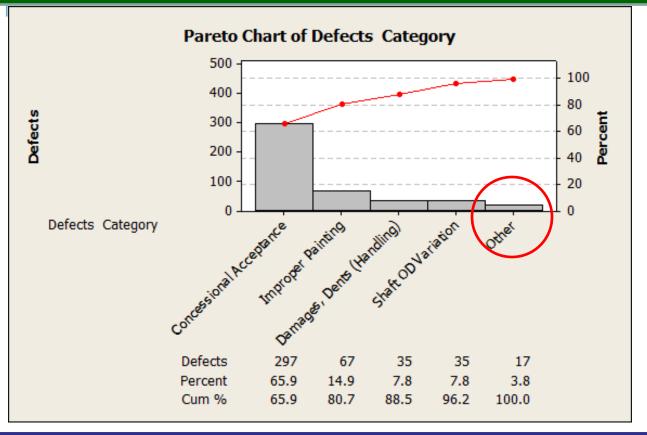
Process Capability of Outer Dia

Inference / Conclusion from the Data

Current Cpk - 1.30, there is scope for improvement

Data Collection Plan

KPIV / KPOV	Process	Type of Data (Variable / Discrete)	Data Source and Location	Sample Size	Who will Collect the Data?	Method of Collecting data	Is the Measurement System Capable?
OD (49.936 - 49.975)	Finishing 1 st operation	Variable	Machining Unit - CNC Line	50	Line Inspector - Selvam	Micrometer 25-50 mm	Yes
OD (34.936 - 34.975)	Cylindrical Grinding	Variable	Machining Unit - CNC Line	50	Padmana bha	Micrometer 25-50 mm	Yes

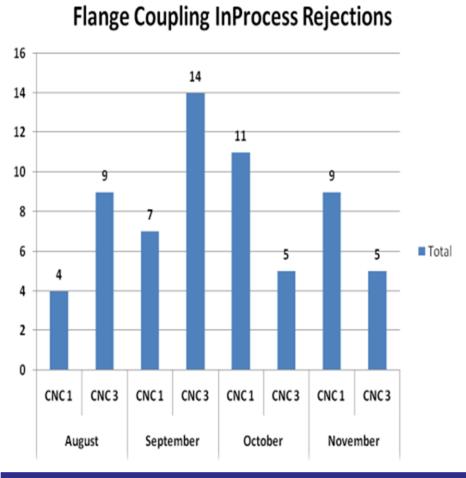


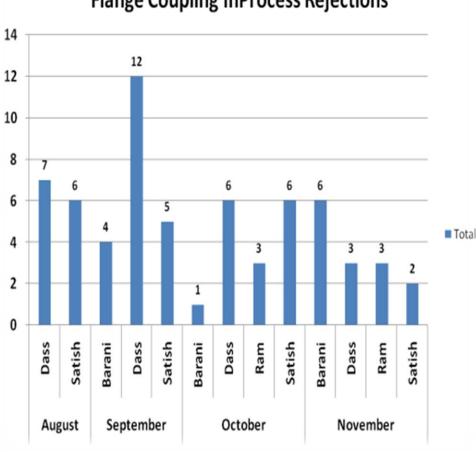
Pareto Analysis

Customer Rejections Data from April – Sep 2011

Inference / Conclusion from the Data

Shaft OD Variation contributes to about 8% of the total rejections, since improper painting, damages, dents were more of discipline issues, they were not considered




Measure

Analyze

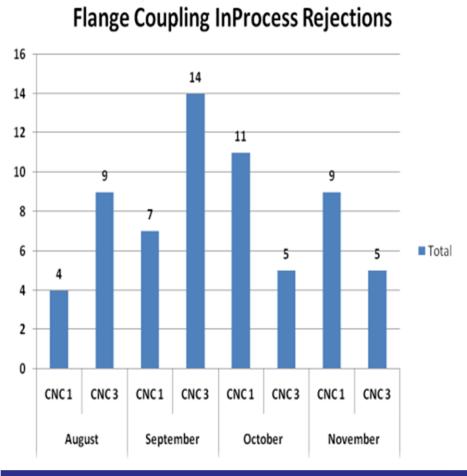
Improve Control

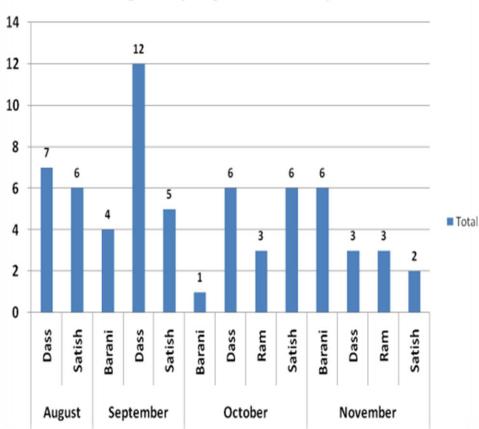
In Process Rejections (OD) Analysis

Flange Coupling InProcess Rejections

Inference / Conclusion from the Data

In Process rejections cannot be attributed solely due to operator /machine




Define

Measure

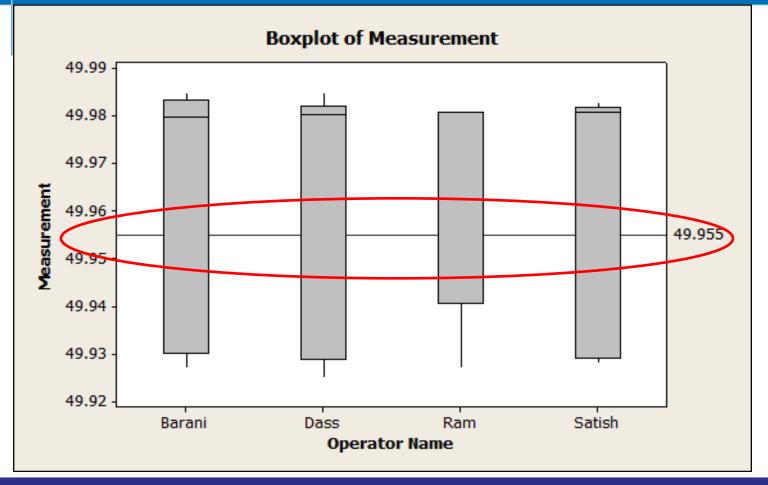
Analyze

Control

Flange Coupling InProcess Rejections

Inference / Conclusion from the Data

In Process rejections cannot be attributed solely due to operator /machine


Define

Measure

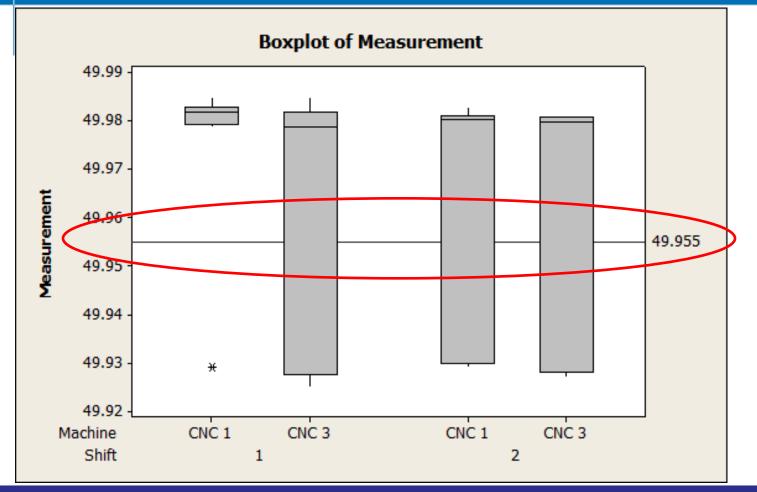
Analyze

Control

Improve

Inference / Conclusion from the Data

Consistent rejections across all the operators from the Spec 49.955. The problem is not solely with the operator.


4			
O	LEAN	SIX	SIGMA

Define

Measure

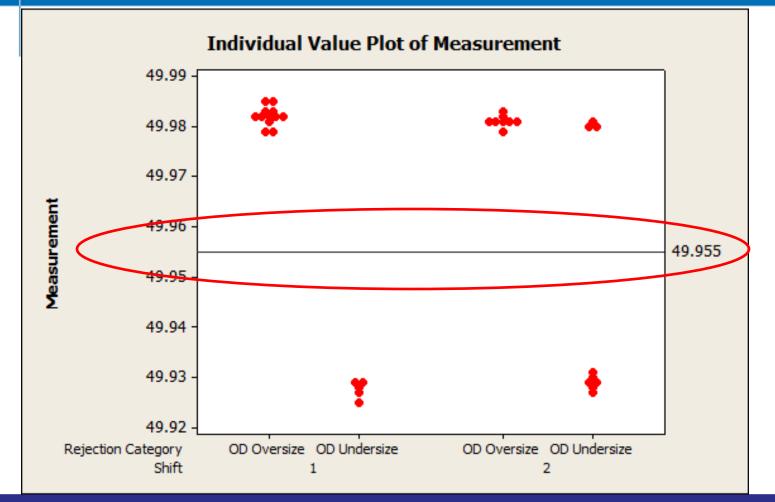
Analyze

e 🔪 Improve

Inference / Conclusion from the Data

Both machines appears to have contributed to rejections across shifts, and data falls on eiither side of Spec 49.955.

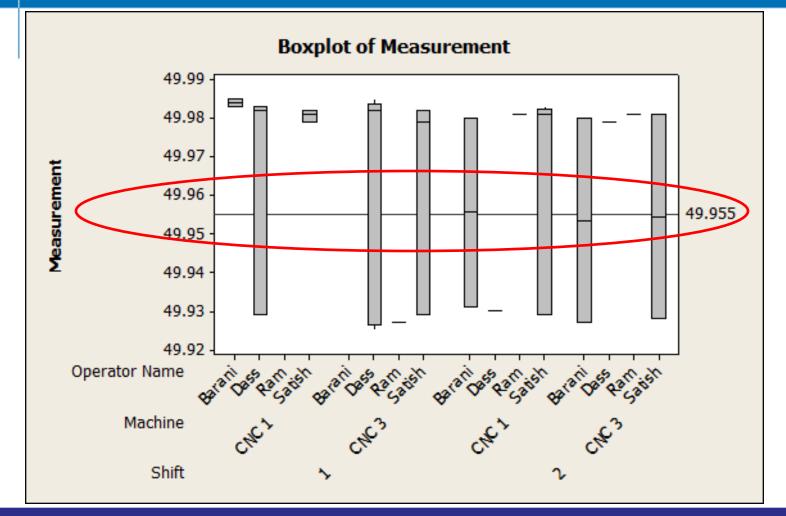
Measure


Analyze

Improve

Control

Define

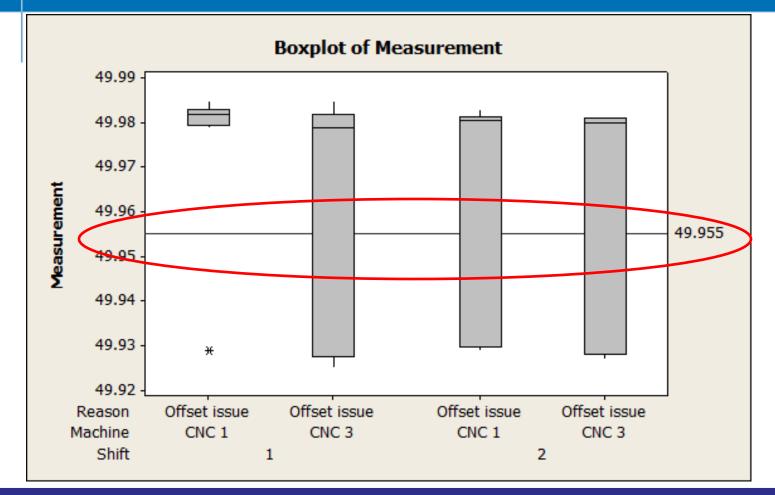

6		
O	LEAN SIX SIG	MA

Inference / Conclusion from the Data

Across shifts, both oversize and undersize appears to exist

CERN SIX SIGMR	Define	Measure	Analyze	Improve	Control	
----------------	--------	---------	---------	---------	---------	--

Inference / Conclusion from the Data


From the graph, it appears that we cannot narrow down the cause to any shift/operator/machine

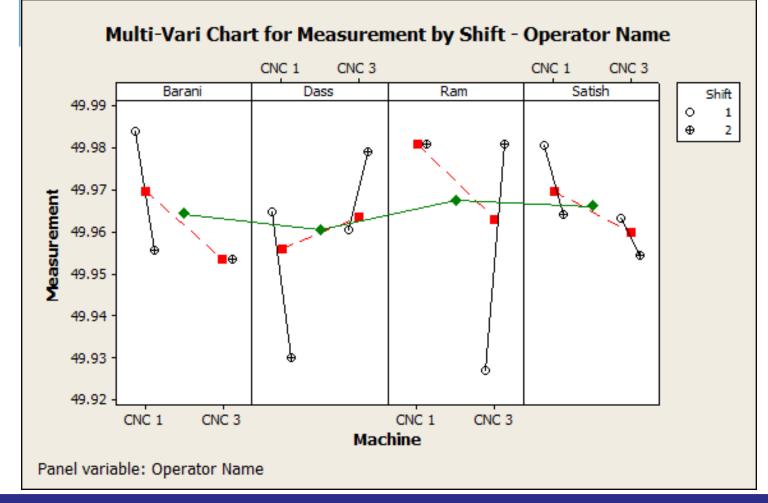
Measure

Analyze

Improve

Inference / Conclusion from the Data

Offset issue seems to be primary reason for OD variation, and it appears to happen across shifts/machines.


Define

Measure

Analyze

Improve

4				
O	LEAN	SIX	SI	GM

Inference / Conclusion from the Data

From the graph, it appears that we cannot narrow down the cause to shift/operator/machine

Define

Measure

Analyze

Improve

Hypothesis test - ANOVA To chk Impact of Machine, Operator, Shifts

General Linear Model: Measurement versus Shift, Machine, Operator Name

Factor	Type	Levels	Values
Shift	fixed	2	1, 2
Machine	fixed	2	CNC 1, CNC 3
Operator Name	fixed	4	Barani, Dass, Ram, Satish

Analysis of Variance for Measurement, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F P
Shift	1	0.0001024	0.0003548	0.0003548	0.49 0.489
Machine	1	0.0003842	0.0003680	0.0003680	0.51 0.481
Operator Name	3	0.0004115	0.0004115	0.0001372	0.19 0.902
Error	28	0.0202134	0.0202134	0.0007219	
Total	33	0.0211114			

S = 0.0268683 R-Sq = 4.25% R-Sq(adj) = 0.00%

Inference / Conclusion from the Data

Cannot narrow down the cause to shift/operator/machine, since P-Value > 0.05, Accept Ho, there is no significant impact of Shift, Machine, Operator

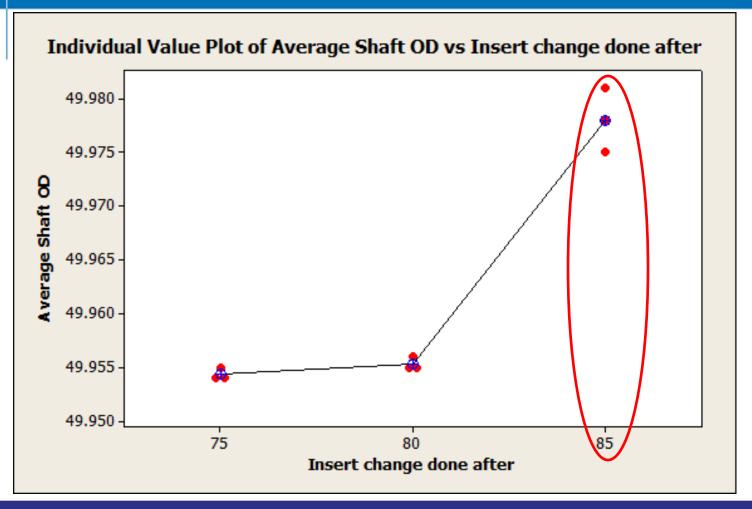
Measure

Analyze

Control

Improve

Define


Raw Data - One way Anova

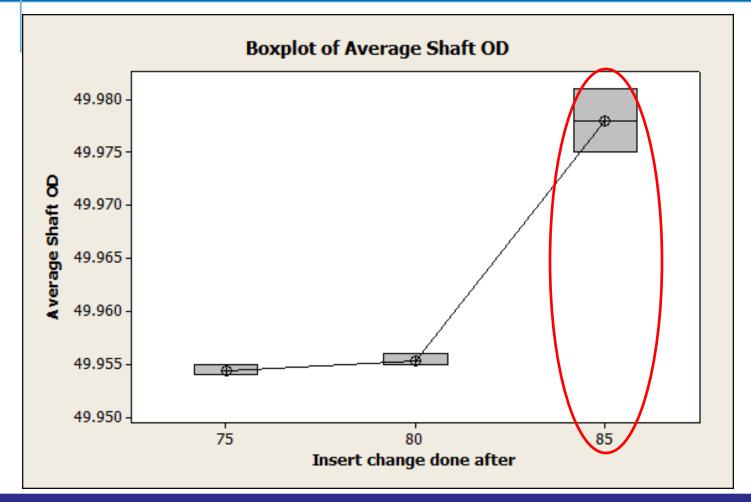
Running Sequence	
of Components	Average Shaft OD
75-80	49.954
80-85	49.955
85-90	49.975
75-80	49.955
80-85	49.955
85-90	49.981
75-80	49.954
80-85	49.956
85-90	49.978

Improve

Individual Value Plot

Inference / Conclusion from the Data

There is significant shift in the average value between 80-85 component readings


Define

Measure A

Analyze

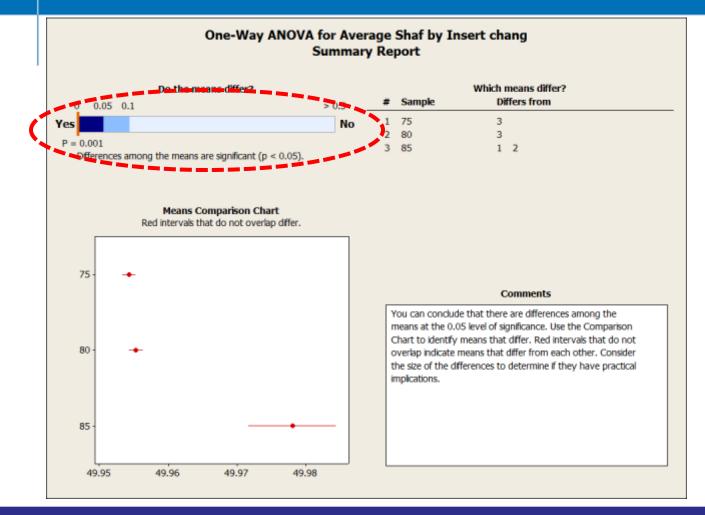
Improve

Box Plot

Inference / Conclusion from the Data

There is significant change in the average value between 80-85 component readings.

Define


Measure

Analyze

Control

Improve

Hypothesis Test - One way Anova

Inference / Conclusion from the Data

Since P-Value < 0.05, Accept Ha, Atleast one of the sample is different

Define

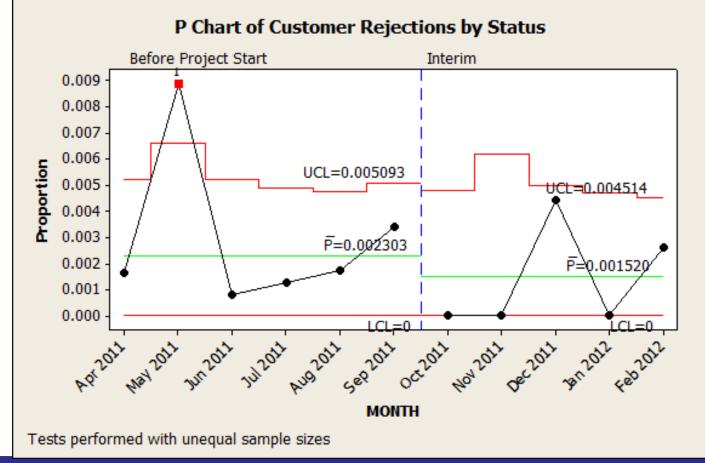
Measure

Analyze

Control

Improve

✓ Inability to identify Insert worn out, leads to oversized components;


✓ Inability to set the **right offset** after tool change, leads to undersized components;

✓ Currently **no mechanism** to keep track of the number of components that are processed for that operation;

✓ Currently no instruction to the operator, as to when to change the insert for 1st operation. Onus is on the operator to keep track and also monitor the dimension of the components and then change the insert accordingly.

Attribute P-Chart – Interim Monitoring

Inference / Conclusion from the Data

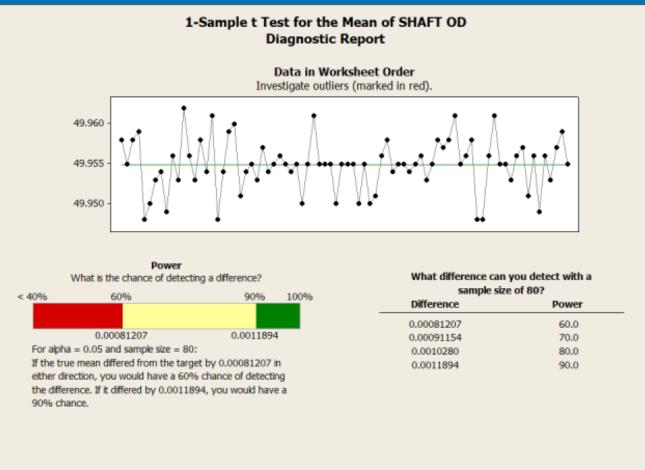
During the interim period, awareness on LSS project was created to all operators, executives & management staff was created, hence a decreasing trend was visible

Define

Measure

Analyze

Improve


Improve

✓ Modified the CNC program to automatically STOP the machine after processing 80 numbers in the 1st operation.

Inference / Conclusion from the Data

Modify the CNC program and then repeat the tests to confirm process capability and study in process rejections

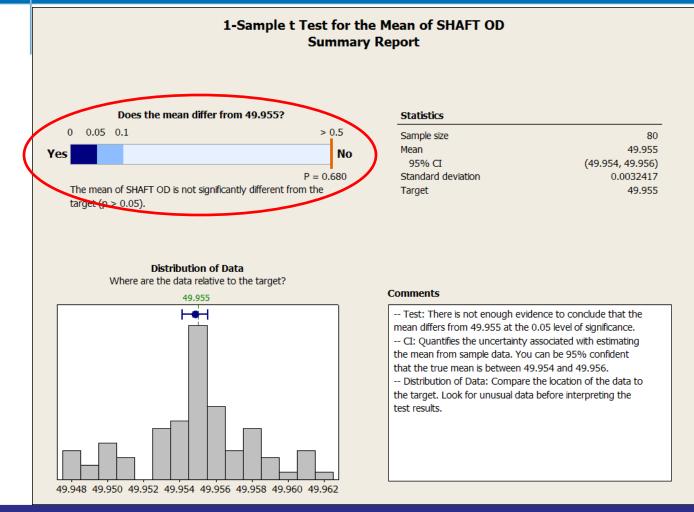
Hypothesis Tests - One-Sample T Test

Power is a function of the sample size and the standard deviation. To detect a difference smaller than 0.0010280, consider increasing the sample size.

Inference / Conclusion from the Data

The mean of the sample data (after improvement) remains close to the expected mean 49.955

6 LEAN SIX SIGMA


Define

Measure >

> Analyze

Improve

Hypothesis Tests - One-Sample T Test

Inference / Conclusion from the Data

Since P-Value > 0.05, there is no significant difference between the Shaft OD actuals and Target

Define

Measure

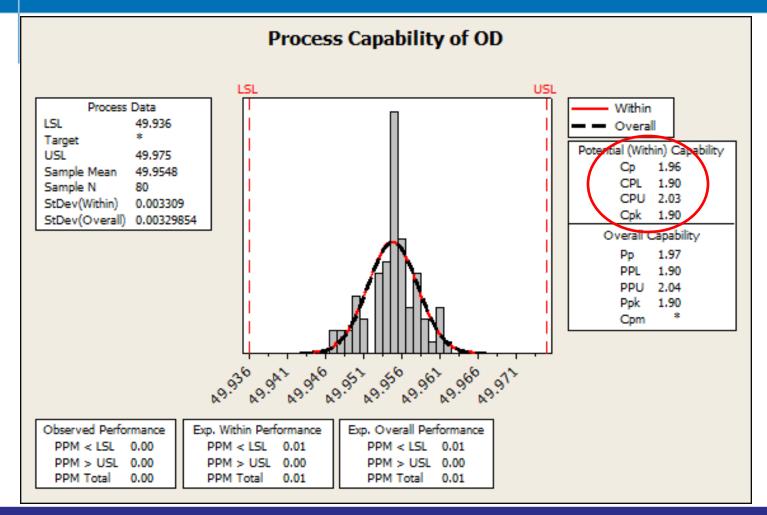
> Analyze

Improv<u>e</u>

Hypothesis Tests - Two-Sample T Test for Data before and after improvement

Inference / Conclusion from the Data

Since P-Value < 0.05, Accept Ha, there is significant difference between Before Vs After



Define

Measure

Analyze

Process Capability – OD Variations - After Improvement

Inference / Conclusion from the Data

Cpk > 1.67, finishing 1st operation process is capable

CLERN SIX SIGMA

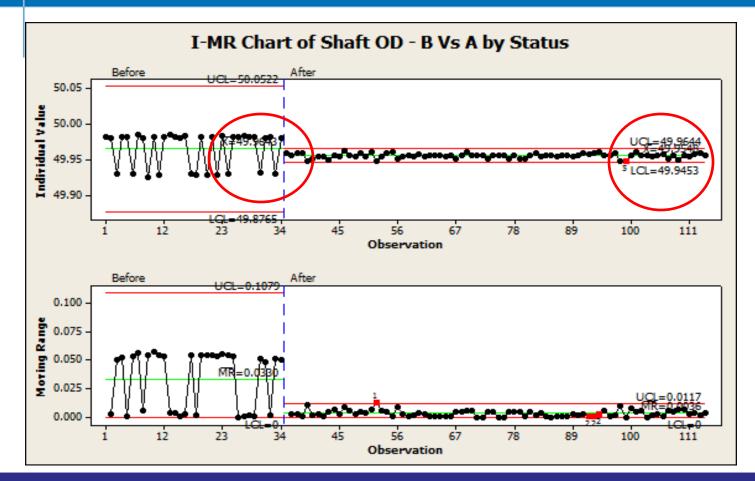
Define

Measure > A

Analyze

Improve >

FMEA - After Improvement


Process	Potential	Potential	S	C Potential	0	Current	Current	D	R.	Recommended	Responsibility	Action	Res	ults		
Function	Failure	Effect(s) of	E	L Cause(s) /	С	Process	Process	E	P.	Action(s)	& Target	Actions	S	0 I	D R	u
	Mode	Failure	V	A Mechanism(s)	С	Controls	Controls	T	N.		Completion Date	Taken	e	c e	e P	
Requirements				of Failure		Prevention	Detection						۷	C	t N	
30.CNC FINISHING 2nd Operation	Run out 0.1 variation	Assembly Fitment Problem at customer end	6	Improper loading	4	Trained operator	Line Inspection Report	3		Taper Mandrel used to check down the Run Out Variation using Dial Gauge	P.Rakku muthu	1215/2012	6	3	2 3	36

Inference / Conclusion from the Data

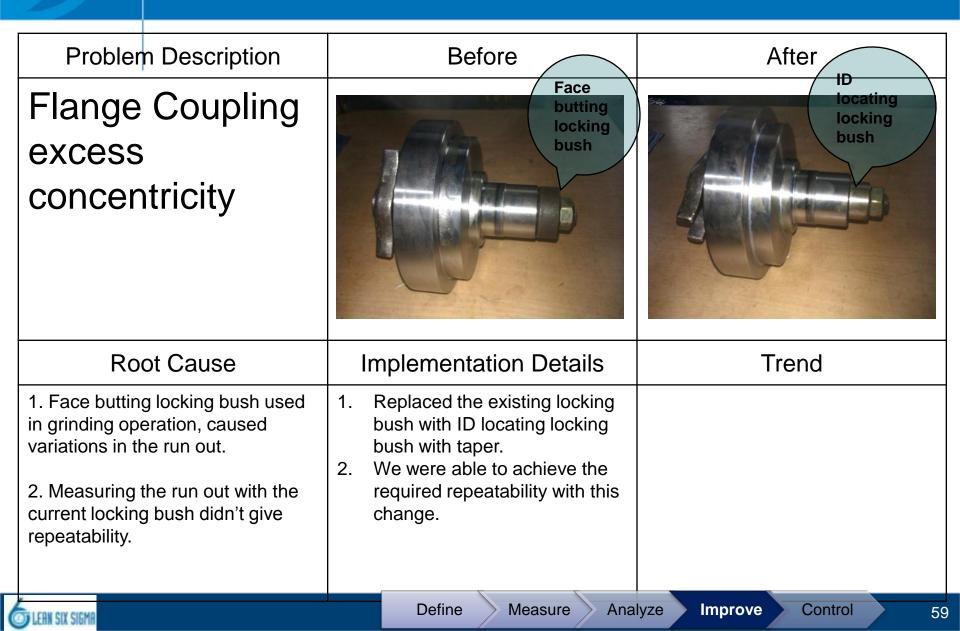
RPN number reduced after intervention

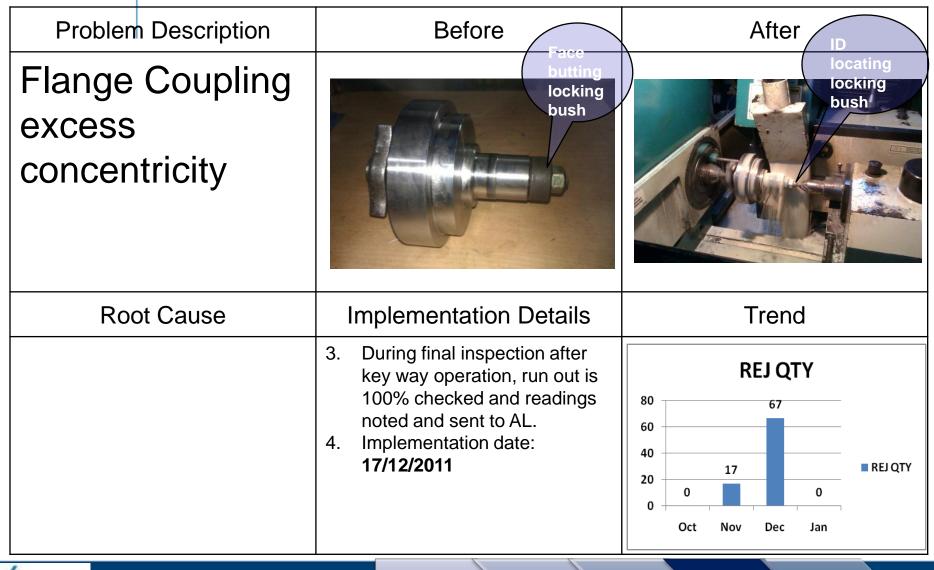
6 LEAN SIX SIGMA	Define	Measure	Analyze	Improve	Control	

Control Charts – Before Vs After

Inference / Conclusion from the Data

Shaft OD size variation reduced drastically


1			
O	LEAN	SIX	SIGMA


Define

Measure Ana

Analyze

Improve

Define Measure

Improve

Home

Problem D	escription	Before	After
Flange C Painting I			
Root C	Cause	Implementation Details	Rejections Trend
MANUAL PAIN DONE WITHO FIXTURE	_	PAINTING DONE WITH THE HELP OF FIXTURE (KEY WAY LOCATION) Implementation Date: 10/08/2011	1 REJ QTY 1

Define

Measure A

Analyze

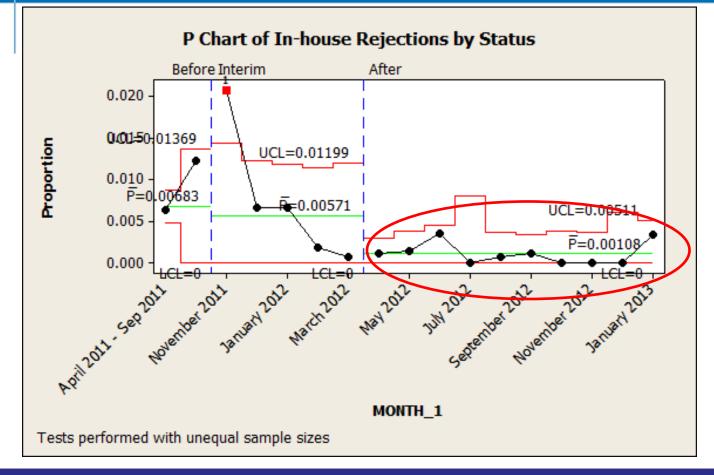
Improve

Home

Problem Description	Before	After		
Flange Coupling Damage Issue	Components handled in open bins			
Root Cause	Implementation Details	Rejections Trend		
Internal movement of components in open bins	Introduced plastic bins with partition exclusively for Flange Coupling.			
	Also introduced wooden	0.8		
	boxes for dispatch to AL	0.4 REJ QTY 0.2 0 0 0 0		
	Implementation Date: 15/09/2011	Oct Nov Dec Jan		
GLERN SIX SIGMR	Define Measure Ana	lyze Improve Control		

Define

Measure


Analyze

Control

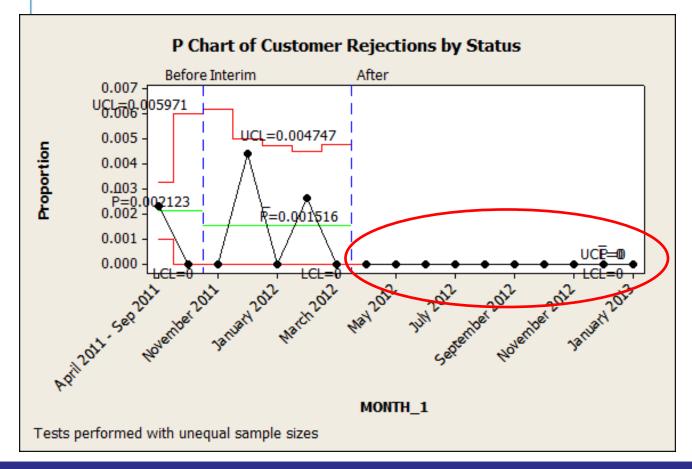
Improve

63

Control Chart – Before Vs After – In-House

Inference / Conclusion from the Data

Before the project, PPM was 6830, In the interim period PPM reduced to 5,710, while after project completion in March 2012 PPM reduced to 1080

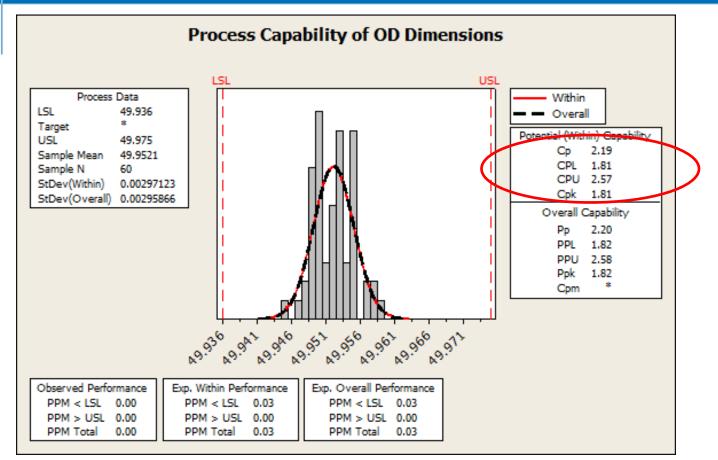

Define

Measure >

Analyze

Improve

Control Chart – Before Vs After – Customer End


Inference / Conclusion from the Data

Before Project, Customer PPM was 2120 and In the interim period PPM decreased to 1516, while after project completion in March 2012, PPM reduced to Zero.

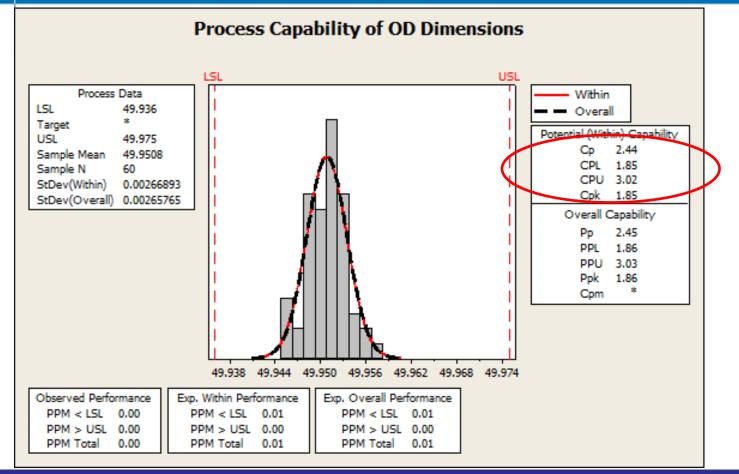
4				
O	LEAN	SIX	SI	GM

Define	Measure	Analyze	Improve	Control
--------	---------	---------	---------	---------

Sustenance of Cp, Cp_k April 2012

Inference / Conclusion from the Data

Process is controlled well within the limits.


Define

Measure A

Analyze

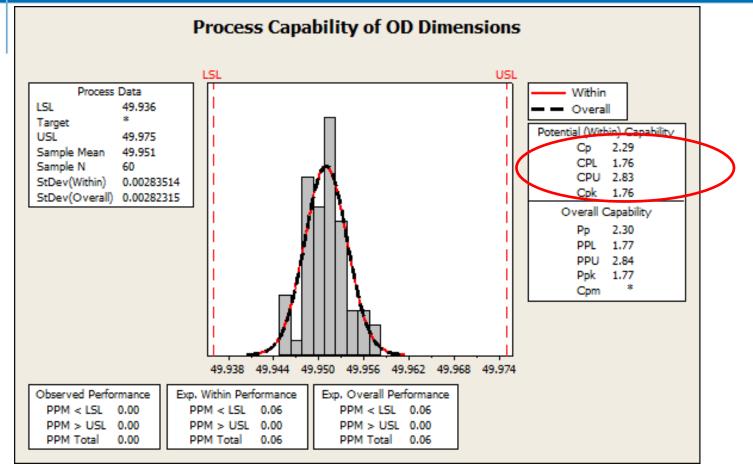
Improve

Sustenance of Cp, Cp_k June 2012

Inference / Conclusion from the Data

Process is controlled well within the limits.

6 LERN SIX SIGMA


Define

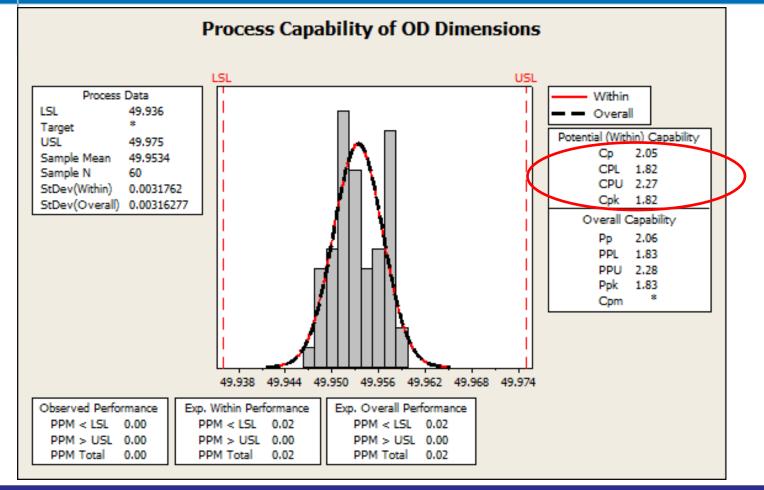
Measure A

Analyze

Improve

Sustenance of Cp, Cp_k Aug 2012

Inference / Conclusion from the Data


Process is controlled well within the limits.

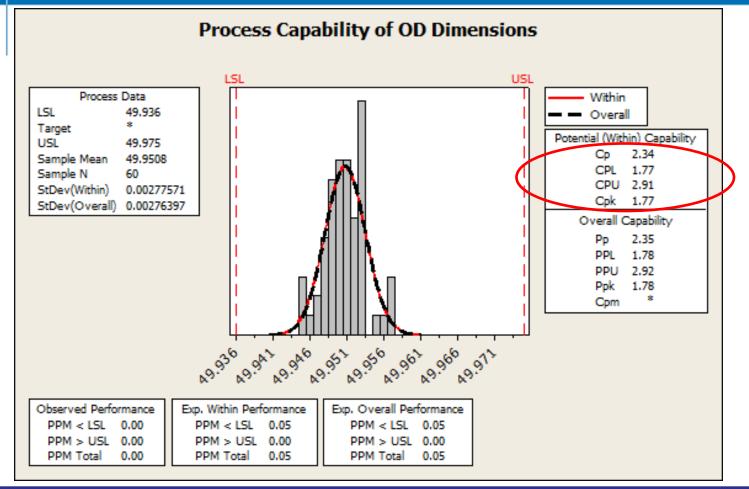
GLERN SIX SIGMR	Define	Measure
-----------------	--------	---------

Analyze

Improve

Sustenance of Cp, Cp_k Sep 2012

Inference / Conclusion from the Data


Process is controlled well within the limits.

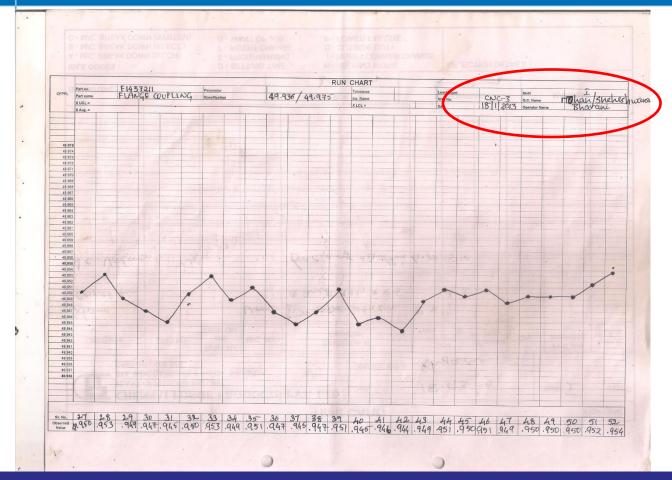
4					
O	LEAN	SIX	S	GM	A

> Analyze

Improve

Sustenance of Cp, Cp_k Nov 2012

Control


Improve

Inference / Conclusion from the Data

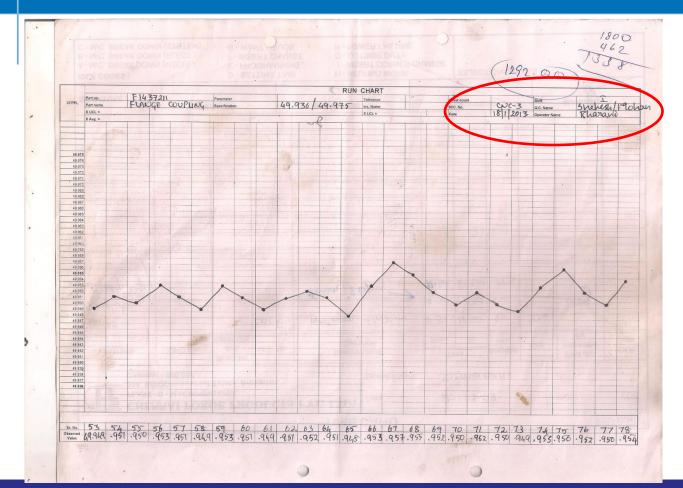
Process is controlled well within the limits.

C LERN SIX SIGMA	Define	> Measure	> Analyze
------------------	--------	-----------	-----------

Monitoring of Critical Characteristic

Inference / Conclusion from the Data

Process is controlled well within the limits.


Define

Measure > A

Analyze

Improve

Monitoring of Critical Characteristic

Inference / Conclusion from the Data

Process is controlled well within the limits.

Define

Measure > A

Analyze

Improve

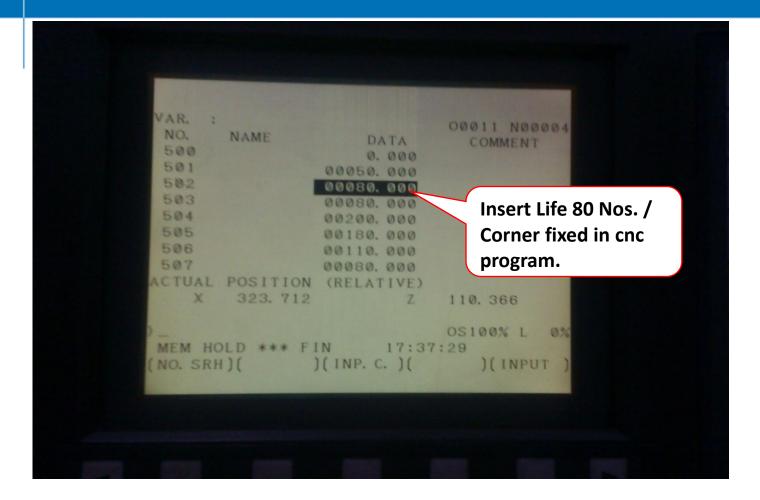
System (ERP) to maintain Gauge/Instrument Calibration data

😨 entERPr	rise V.9.0.41(Chenn	ai Forge Products (U	nit - 003) - 2012-2013) -	[LIST OF CALIB	RATION]								ð 🗙
🖳 Maste	ers Marketing	Sales Planning	Production Quality	Maintenanc	e Purchase	Stores MIS Repo	orts Help						- 8 ×
()) 🍓 😰	😌 🍓								Δ 🖁	i 🧐 🖉	1 🚨
LIST (OF CALIBRAT	TION						🔲 Due Date	From	13/02/2012	To 13/02	2/2013	
	New	Edit	Delete				InsType	All	•	Calibration	All		•
S.No	Calibration Date	Instrument Code	Instrument Name		Frequency	Next Calibration	Agency			Remarks	Document		
1	01/08/2012	CFP-FC-020	SNAP GAUGE		365	01/08/2013	ESYA ENGINEERING PVT.LT	D.			2		
2	01/08/2012	CFP-FC-020-08	SNAP GAUGE		365	01/00/2013	EXCELLENT CALIBRATION S	SERVICES			0		
3	05/08/2012	CFP-FC-020-03	SNAP GAUGE		365	05/08/2013	ESTA ENGINEERING PVT.LT	D.			0		
4	21/10/2012	CFP-FC-020-1	SNAP GAUGE		365	21/10/2013	ESYA ENGINEERING PVT.LT	D.			0		
5	21/10/2012	CFP-FC-020-4	SNAP GAUGE		365	21/10/2013	ESYA FIGINEERING PVT.LT	D.			0		
6	29/10/2012	CFP-FC-000	SNAP GAUGE		365	29/10/2013	EXCELLENT CALIBRATION S	SERVICES			1		
7	29/10/2012	CFP-FC-020-04	SNAP GAUGE		365	29/10/2013	EXCELLENT CALIBRATION S	SERVICES			0		
			1		cfp-fc-020								
	Export	Print		Search	crp-rc-020					F	lefresh	Exit	
				_			Marvel Version	n - Licensed upto : 01/08	/2019	localhost/erp_0		13/02/2013 0	
<u></u>		o 🛍 📀		W							- 📊 I	()) 🏴 6:2	9 PM
nce	/ Cor	nclusi	on fron	n the	Dat	a							

Automated System to indicate gauge calibration alerts and maintain data

CLEAN SIX SIGMA	Define	Measure	Analyze	Improve	Control	
CERN SIA SIGIIN				-		

System (ERP) to maintain Gauge/Instrument Calibration data


entERPri	ise V.9.0.41(Chenn	ai Forge Produ	cts (Unit - 003) - 2012	-2013) - [LIST OF CALIB	RATION]							- F
🛛 Master	rs Marketing	Sales Plann	ing Production	Quality Maintenanc	e Purchase	Stores MIS Rep	oorts Help					- 8
0) 🎨	<u></u>							Δ 👼	i 🧐 🖉 🏅
LIST O	F CALIBRAT	ION						Due Date	From ¹	3/02/2012	To 13/02	/2013
	New	Edit	Del	ete			InsType	All		Calibration	All	-
S.No	Calibration Date	Instrume Code	Instrument I	lame	Frequency	, Next Calibration Date	Agency			Remarks	Document	
1	01/08/2012	CFP-FC-02	0 SNAP GAUGE	:	365	01/08/2013	ESYA ENGINEERING PVT.L	TD.			2	
2	01/08/2012	CFP-FC-02	0-08 SNAP GAUGE	:	365	01/08/2013	EXCELLENT CALIBRATION	SERVICES			0	
3	05/08/2012	CFP-FC-02	0-03 SNAP GAUGE	1	365	05/08/2013	ESYA ENGINEERING PVT.L	TD.			0	
4	21/10/2012	CFP-FC-0				CALIBRA	TION ENTRY				0	
5	21/10/2012	CFP-FC-0									0	
6	29/10/2012	CFP-FC-0	Instrument	CFP-FC-020-1	- SNAP GAU	GE 👻	Instrument Type	Attribute			1	
7	29/10/2012	CFP-FC-0	Danas	Min. SO MM /	Max : 50 MM		Francisco	365	0		0	
			Range	1 30 11117	Hax 1 50 Hit		Frequency					
			Calibration Agency	ESYA ENGINE	ERING PVT.L	TD. 🔻	Last Calibration Date	01/04/2012				
			Calibration Date	21/10/2012			Next Calibration Date	21/10/2013				
			Remarks									
1												
							Upload Certificate	Save		Exit		
1												
					C 6 000							
E	Export	Print		Search	cfp-fc-020						Refresh	Exit
							Man/el Versie	n - Licensed upto : 01/	/08/2010	localbost/ern	001/UmaSankari	13/02/2013 06:29:44
								- Excensed upto : 01/	100/2015	localitost/erp_		, <u> </u>
	6 🗔 🗌	0 🛍	• • • • • • • • • • • • • • • • • • • •								- 🛅 🤇	») 🏴 6:29 PM

Inference / Conclusion from the Data

Automated System to indicate gauge calibration alerts and maintain calibration data

CLERN SIX SIGMR	Define	Measure	Analyze	Improve	Control	
	/					

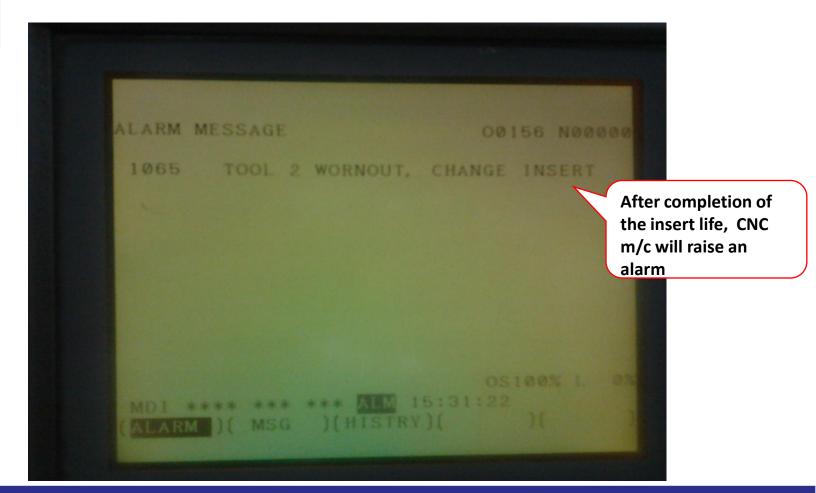
Mistake Proofing at CNC Machine Level

Inference / Conclusion from the Data

The count of 80 nos mentioned in the CNC Program for Full Finishing First Operation

Measure

Analyze


Improve

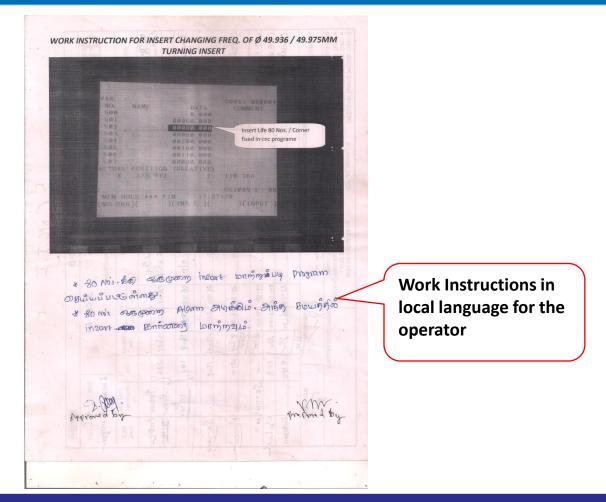
Control

Define

Mistake Proofing at CNC Machine Level – ALARM MESSAGE

Inference / Conclusion from the Data

ALARM MESSAGE instructing the operator to change the Insert Corner


Define

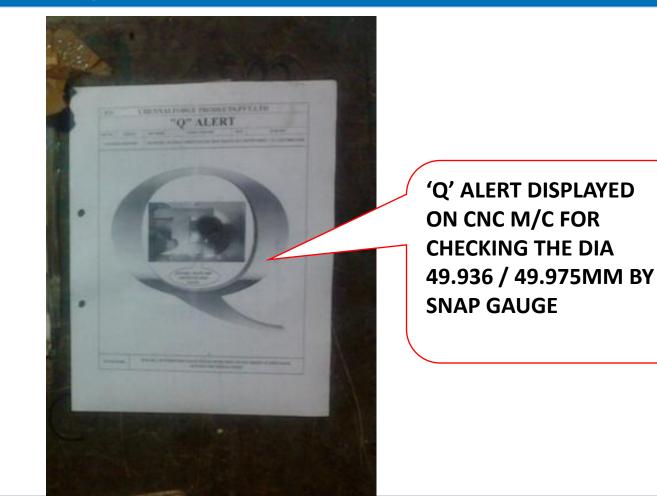
Measure

Analyze

e Improve

Mistake Proofing at CNC Machine Level – ALARM MESSAGE

Inference / Conclusion from the Data


Work Instruction in local language for the operator

Define Measure Analyze

Improve

Work Instructions at CNC Machine Level – Full Finishing First Operation

Inference / Conclusion from the Data

Visual Control – Quality Alert displayed to check the diameter with Snap Gauge

6 LERN SIX SIGMA

Define

Measure

> Analyze

e Improve

Control Plan

PROTO TYPE	PRE-LAUNCH	PRODUCTION		CONTROL PLAN							
CONTROL PL	AN NUMBER : 002		Key Contact/Phone : M A. Senthil kumar - 94447573	Sukumar 9444904212 / 21		DATE (ORIG) : 22.09.2007					
PART NUMB F 1437211 / H	ER / LATEST CHANGE LEVEL: HC		Core Team : M.SUKU P.PERUMAL/ S.RAJIV GA KARTHICK/B.PREMKUM		CUSTOMER ENGINEERING APPROVAL / DATE (IF REQ'D)						
PART NAME Flange CO			SUPPLIER / PLANT APPRO			CUSTOMER QUALITY APPROV.	x	IF REQ'D)			
SUPPLIER NA Chennai FC	AME : PRGE PRODUCTS (P) LTD.,		OTHER APPROVAL / DA'	TE (IF REQ'D)		OTHER APPROVAL / DATE (IF	FREQ'D)				
PART /	PART / OPERATION NAME & MACHINE, DEVICE, JIG,					METHODS					
PROCESS	DESCRIPTION OF	FIXTURE, TOOLS FOR	DEODUOT	PRODUCT / PROCESS	SPL	EVALUATION	SAM	NPLE	CONTROL	REACTION PLAN	
NO.	NO. OPEARATION MANAU		PRODUCT	SPECIFICATION AND TOLERANCE	CHAR	MEASUREMENT TECHNIQUE	SIZE	FREQ METHOD			
	FORGING DONE AT INHOUSE WITH 70 mm ROD /MATERIAL	DIE & TOOL USED	AS PER INCOMING INSPECTION PLAN	OUTER DIA 70		VERNIER	5%	EVERYLOT	IR	INFORM TO SUPPLIER & TAKE IMMEDIATE ACTION FOR REPLACEMENT	
	CK-45			MATERIAL CK-45		VERIFYING MILL TC	5%	EVERYLOT	IR	INFORM TO SUPPLIER & TAKE IMMEDIATE ACTION FOR REPLACEMENT	

Define

Measure

Analyze

Improve

Control Plan

PART /	OPERATION NAME &	MACHINE, DEVICE, JIG,	CHARACTERISTICS		1	METHODS						
PROCESS NO.	DESCRIPTION OF OPEARATION	FIXTURE, TOOLS FOR MANAUFACTURE	PRODUCT	PRODUCT / PROCESS SPECIFICATION AND	SPL	EVALUATION	SAMPLE		CONTROL	REACTION PLAN		
NO.	OFEARATION	MANAUFACIURE	TOLERANCE CHAR MEA		MEASUREMENT TECHNIQUE	SIZE	FREQ	METHOD				
			OUTER DIAMETER	43								
			LENGTH	118								
20	20 FORGING INSPECTION		OUTER DIAMETER	120		VERNIER	5%	EVERY LOT		QUARANTINE ADJUST & RECHECK		
20			OUTER DIAMETER	37		VERGUER	576	Event Eor		Quinternation de la calacter		
			OUTER DIAMETER	98								
			OUTER DIAMETER	53					FIR			
			OUTER DIAMETER	43								
			LENGTH	118								
30	RECEIVING INSPECTION		OUTER DIAMETER	120		VERNIER	5%	EVERY LOT		QUARANTINE ADJUST & RECHECK		
50	RECEIVINGINGIECTION		OUTER DIAMETER	37		VERVIER	576	EVERTEOT		QUARANTINE ADJUST & RECHECK		
			OUTER DIAMETER	98								
			OUTER DIAMETER	53					RIR			
			OUTER DIAMETER	39.80 / 40.20		VERNIER						
40	CNC 1ST OPERATION	WNMG 080412 FACING & TURNING TOOL	CHAMFER	$2 \times 45^{\circ}$		BEVEL PROTRACTOR & VERNIER	5 NOS	PER HOUR	LIR	QUARANTINE ADJUST & RECHECK		
10	(ROUGH MACHINING - I)		LENGTH	40.50 / 41.00		VERNIER		Thatmoon	Larv	Qeinen in Diebeer anderheit		
			TOTAL LENGTH	110.20 / 110.80		VERNIER						
			OUTER DIAMETER	117.30 / 117.70		VERNIER						
			OUTER DIAMETER	52.30 / 52.70		VERNIER						
			LENGTH	14.80 / 15.20		VERNIER						
			TOTAL LENGTH	108.10 / 108.80		VERNIER						
50	CNC 2 ND OPERATION	WNMG080412 FACING &	LENGTH	25.80 / 26.20		VERNIER	5 NOS	PER HOUR	LIR	QUARANTINE ADJUST & RECHECK		
50	(ROUGH MACHINING - II)	TURNING TOOL	DRILL DIA METER	Ø13.30/13.70		VERNIER	51105	Latinotic	Liiv			
			LENGTH	52.30/53.00		VERNIER						
			CHAMFER	$1.5 imes 45^{\circ}$		BEVEL PROTRACTOR & VERNIER						
			RUN OUT	0.50 WRT A		HEIGHT VERNIER						
		(CHAMFER	$1.5\times45^\circ$		BEVEL PROTRACTOR & VERNIER						
60	CASE HARDENING	PIT TYPE FURNANCE	HARDNESS	227/277 BHN		BRENELL HARDNESS TESTER	5 Nos	Per LoT	RIR & SIR	QUARANTINE ADJUST & RECHECK		
					I	1						

Define

Measure Ar

Analyze

Improve

Voice of Customer – AL Ennore

From: Senthil S (Quality "H" & "N" Engines) Sent: Tuesday, June 26, 2012 9:40 AM To: Muthuraman R (CQ – Supplier Quality) Cc: Sethuraman R (CQ – Supplier Quality) Subject: RE: Flange Coupling LSS Project Presentation

Dear Muthuraman,

Supply of flange couplings from M/s Chennai forge supplies have improved now and the rejections for the period from March '2012 to May'2012 is nil. Keep monitoring the supplier closely on the improvements / changes made at their end to maintain the same.

Regards, <u>S.Senthil</u>

From: Muthuraman R (CQ – Supplier Quality) Sent: Sunday, June 24, 2012 9:07 AM To: Senthil S (Quality "H" & "N" Engines) Cc: Sethuraman R (CQ – Supplier Quality) Subject: FW: Flange Coupling LSS Project Presentation

Dear sir,

As discussed Please find the attached LSS project of Chennai forge for the flange coupling OD undersize/oversize (49.936/49.975). Kindly check at your end and request to send your feedback for the completion of projects.

Define

Measure

Improve

Quality Audit Plan by Customer (AL)

	forge Private Itd D/001 A As per Control plan		Supplier Quality audit plan - Process Audit 2012 Date : 02.01.2012														
Sino	Machining oiperation	Jan-12	Jan-12	Feb-12	Mar-12	Apr-12	May-12	May-12	Jun-12	Jul-12	Aug-12	Sep-12	Sep-12	Oct-12	Nov-12	Dec-12	Jan-13
1	Roughing- CNC 2nd operation		3 shift					3 shift			-		3 shift				2012)
2	CNC finishing 1st operation	011 - Dec		3 shift			12 - Apr		3 shift			2012 -Aug		3 shift			2012 - Dec 2
3	CNC finishing 2nd operation/MSA	01(Sep 2			3 shift★		02 (Jan 20:			3 shift★		03 (May 2			3 shift★		04 (Sep
4	Induction hardening /	MRM				3 shift	MRM				3 shift	MRM				3 shift★	MRM
		1st cycle 2nd cycle								3rd	cycle						

Cost Benefit – CFPPL

Cost Savings (In house + Customer) Rejections per month - INR 18,458 /-

Annual Projected Savings - INR 221,496 /-

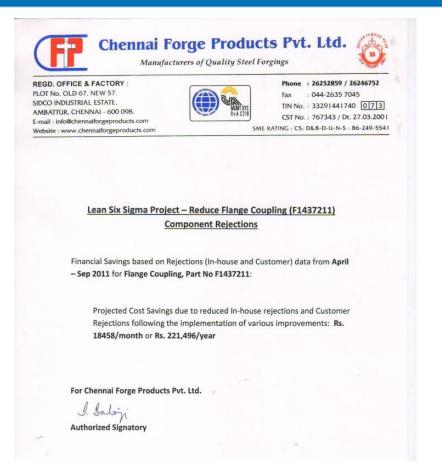
Inference / Conclusion from the Data

Annual Savings of INR 2.2 Lakhs for the Supplier as Vetted by the Supplier, due to LSS project undertaken by Supplier to reduce OD variations

Measure

Define

Analvze


Improve

Control

83

Cost Benefit – CFPPL

Inference / Conclusion from the Data

Annual Savings of INR 2.2 Lakhs for the Supplier as Vetted by the Supplier, due to LSS project undertaken by Supplier to reduce OD variations

Define

Measure

Analyze

Improve

Tools Used

Tools	Define	Measure	Analyze	Improve	Control
Charter					
Gantt Chart					
Pareto Analysis					
Process Mapping					
Fish bone diagram					
Attribute P-Chart					
Process Capability					
Box Plot					
Individual Value plot					
Multi-Vari analysis					
Hypothesis Testing					
Analysis of Variance					
IMR Control charts					
Control Plan					
Horizontal Deployment					
Voice of Customer					

Lessons Learnt

- Critical analysis of difficult issues thru LSS approach gives more insights;
- Advantages of data collection and maintenance, and its positive impact on the process;
- Analysis of existing data, and its positive impact on the process;
- Use of current data to make future improvements and for sustenance;
- Horizontal deployment of control in CNC program for Semi finished flange coupling and other similar components (Hub Fan to SFL) at CFL Supplier end to meet customer requirements.

Acknowledgements

- Many thanks to the AL CQE Mr. R. Sethuraman & others and Mr. V. Rajagopal of LSS, AL Ennore for the project support & guidance of LSS approach and tools onsite;
- Thanks to CFPPL QA and Production team for the execution of project to meet organization deliverables;
- Many thanks to Mr. Hemant of Institute of Quality & Reliability for LSS training.

Thank You...

